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The proper orthogonal decomposition (POD) technique is applied in the frequency domain to
obtain a reduced-order model of the unsteady #ow in a transonic turbomachinery cascade of
oscillating blades. The #ow is described by a inviscid*viscous model, i.e. a full potential
equation outer #ow model and an integral equation boundary layer model. The nonlinear
transonic steady #ow is computed "rst and then the unsteady #ow is determined by a small
perturbation linearization about the nonlinear steady solution. Solutions are determined for
a full range of frequencies and validated. The full model results and the POD method are used
to construct a reduced-order model in the frequency domain. A cascade of airfoils forming the
Tenth Standard Con"guration is investigated to show that the reduced-order model with only
15}75 degrees of freedom accurately predicts the unsteady response of the full system with
approximately 15 000 degrees of freedom. ( 2000 Academic Press
1. INTRODUCTION

MODELING AND CONTROLLING aeroelastic systems are issues which have held the interest of
researchers since the early days of aerospace engineering. In this paper, we investigate
unsteady viscous #ows in turbomachinery. We focus our attention on modeling of lin-
earized unsteady #ows through a cascade of vibrating airfoils. Current computational #uid
dynamics (CFD) codes compute time histories and frequency responses for such #ows using
models with up to 104}106 degrees of freedom. However, the required computational time
of such codes is very long. Thus, these codes are not routinely used for design applications.
An alternative way of addressing this problem is to use reduced-order modeling.

A reduced-order model has by de"nition a smaller number of degrees of freedom than the
original CFD model and is typically several orders of magnitude smaller. Ideally, the
reduced-order modeling provides accuracy comparable to the original CFD model, but at
much less computational cost when used in an aeroelastic analysis. The tradeo! between
accuracy and complexity of the model is dependent on the particular application, of course.
Nevertheless, using reduced-order modeling in preliminary design and optimization ana-
lyses is very promising especially when active control of an aeroelastic system is concerned
because most current control strategies require relatively small system models, with 100
degrees of freedom or less.

Although the "eld of reduced-order modeling is a relatively recent development, there are
several distinct techniques that have been developed. Some of these techniques that have
0889}9746/00/111215#20 $35.00/0 ( 2000 Academic Press
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been used in aeroelasticity and unsteady aerodynamics were mostly based on physical
intuition (Greitzer 1976; Moore & Greitzer 1986; Whitehead 1959). These techniques are
useful, but they are limited to a small range of parameter variations in the modeled system,
such as the reduced frequencies and static and dynamic loads. For example, the actuator
disk theory introduced by Greitzer (1976) used the assumption that the spacing between
blades in turbomachinery cascades is much smaller than the wavelength of the perturba-
tions #owing through the blade row. These techniques were followed by more recent
analyses that use mathematically derived reduced-order models, such as PadeH approxi-
mants developed from curve "tting the unsteady aerodynamic transfer functions (Dowell
1980; Peterson & Crawley 1988; Ueda & Dowell 1984). Eigenmode summation techniques
in the time or frequency domains (Dowell 1995; Hall 1994), and proper orthogonal
decomposition (Dowell et al. 1999; Epureanu et al. 2001; Hall et al. 1999; Romanowski
1996) are the most recent and powerful of such methods.

Most of the recent research on reduced-order modeling has focused on dynamically
linearized systems. However, the techniques developed have been used to model both linear
and nonlinear phenomena (Noor 1994; Stone & Cutler 1996). The dynamically linearized
reduced-order modeling technique has been applied to a wide variety of systems, such as
Burger's model of turbulence (Canuto et al. 1988; Chambers et al. 1988), full potential
equation (Hall et al. 1995), Euler equations, Navier}Stokes equations (Deane et al. 1988),
Raleigh}BeH nard convection (Holmes et al. 1996), turbulence, and boundary layer models
(Liu et al. 1994; Sirovich 1987a, b, c). Additionally, fully nonlinear normal modes and
reduced-order models were also investigated for low-dimensional systems (Shaw & Pierre
1993, 1994).

In the time domain, reduced-order models have been developed for a variety of systems.
Flows over isolated airfoils described by the Navier}Stokes equations have been investi-
gated by Romanowski (1996). In his analysis, the Navier}Stokes equations were used in
conjunction with eigenmode summation techniques (Mahajan et al. 1991) to construct
reduced-order models. Recently, the frequency domain has been more extensively analyzed
in experiments, full computer #uid dynamics calculations, and reduced-order model con-
struction (Ayer & Verdon 1998; Bu!um et al. 1998; Kim et al. 1997; Kim 1998; Sharma et al.
1992). Experiments using a cascade of blades vibrating sinusoidally with small amplitudes
have been performed. Also, dynamically linearized frequency domain models have been
constructed along with frequency domain reduced-order models. The inviscid full-potential
equation in the frequency domain was also used to construct reduced-order models for
#ows in turbomachinery cascades (Hall et al. 1995). Most of the work on reduced-order
modeling has been focused on inviscid, subsonic #ows. However, recent studies have
investigated inviscid transonic #ows over isolated airfoils and rows of #at plates in
turbomachinery (Hall et al. 1999). A coupled inviscid}viscous model using the full-potential
equation and a "nite di!erence boundary layer model was also used together with an
eigenmode summation technique to construct reduced-order models of the #ow in a com-
pressor cascade (Florea et al. 1998).

One of the techniques used to construct reduced-order models is proper orthogonal
decomposition (POD), also known as the Karhunen}Loève method. This is a technique
that allows one to obtain good approximations of the spatial modes of vibration and the
dynamics of a system using the response of the system to various sample excitations. First
introduced in the context of meteorology and wind engineering to analyze experimental
data (Cenedese et al. 1997; Jeong & Bienkiewicz 1997; Kikuchi et al. 1997; Sahan et al. 1997;
Tamura et al. 1997), proper orthogonal decomposition has been used for a wide variety of
problems (Bienkiewicz 1996; Ho et al. 1995; Uematsu et al. 1997). The wide applicability of
the method is due to the fact that it is only based on the assumption of a low dimensionality
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of the dynamics of large systems (Chambers et al. 1988; Georgiou & Schwartz 1996).
For a large category of problems, this assumption holds because in many cases the energy
of the dynamics of the system being analyzed is, to a very large extent, contained in the
dynamics of a few modes of vibration. In the context of aeroelasticity, if one only wants
the aerodynamic information per se, then constructing the POD model takes about as
much time as the original method. However, if one wants to combine the aerodynamic
model with a structural model (not to mention an active control system), then the
time saved is orders of magnitude larger, because one is using a POD model with less than
100 degrees of freedom (as shown in this paper) versus using the original CFD model
with more than 10 000 degrees of freedom. Thus, it is in the aeroelastic analysis that
the time savings are primarily realized, not in generating the aerodynamic data per se.
The purpose of constructing a POD model is then to put the basic physics of the original
CFD model in a more compact form that is advantageous to those who do aeroelastic
analyses.

In the context of turbulent #ows, proper orthogonal decomposition was adopted as
a technique that allows for the identi"cation of coherent structures that naturally form in
the #ow (Holmes et al. 1996; Sirovich 1987a, b, c). The coherent structures that contain most
of the energy of the dynamics are usually the most important. Very well suited for linear
systems, proper orthogonal decomposition is also applicable to nonlinear systems. How-
ever, for some nonlinear systems, the applicability of proper orthogonal decomposition
method is limited because the modes or coherent structures strongly exchange energy and,
therefore, the required number of modes that may capture most of the energy of the
dynamics increases very rapidly. This phenomenon occurs because the inherent dynamics of
the system is not low dimensional (Strain & Greenside 1998). Typical examples where the
simple proper orthogonal decomposition technique is not successful are systems that
exhibit spatio-temporal chaos. However, in such situations, proper orthogonal decomposi-
tion may also be used in a local fashion. When spatio-temporal chaos is present, usually
there are unstable limit cycles embedded in the strange attractor on which the dynamics
collapses. The dynamics along these limit cycles is low dimensional and therefore local
reduced-order models may be constructed. Using the low-dimensional approximate dy-
namics along the limit cycles one may design controllers that will stabilize these limit cycles
(Epureanu & Dowell 1997, 1998; Epureanu et al. 1998).

In this paper, a fully nonlinear steady model and an unsteady model developed from
dynamic linearization of the inviscid}viscous transonic #ow in a turbomachinery cascade is
developed. The inviscid transonic outer #ow is described by the full-potential equation
using a Galerkin formulation (Hall 1993). The viscous #ow in the boundary layer is
described by an integral boundary layer model (Cizmas 1995; Cizmas & Hall 1995; Drela
1986; Nishida & Drela 1995) based on a set of correlation functions derived by Drela (1986)
from analytical, numerical and experimental data. First, the nonlinear steady #ow is
computed. Then, the unsteady #ow equations are dynamically linearized about the non-
linear steady #ow solution. A frequency domain, dynamically linearized model is construc-
ted, and the proper orthogonal decomposition technique is applied in the frequency domain
to obtain a reduced-order model. While the simultaneous inviscid}viscous coupling solu-
tion method is a well-established approach, the use of the proper orthogonal decomposition
(POD) method for such inviscid/viscous models is new and a novel contribution of this
paper. Numerical results obtained with the present full model are compared with those from
Navier}Stokes calculations to validate the underlying physical basis for the present model.
A reduced-order model obtained using only 15}75 degrees of freedom is then shown to
capture accurately the dynamics of the transonic, viscous, small-disturbance #ow of the
present full model.
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2. MODELING

First introduced by Prandtl, the boundary layer assumption is used here. In many cases of
interest, the Reynolds number is very large and the e!ect of the viscosity is limited to a thin
region around the solid boundaries and the wake, also known as a boundary or inner layer.
The #ow is decomposed into an inviscid outer #ow and a viscous inner #ow. In the
following, we present the inviscid model, the viscous model, and the coupling solution
technique used.

2.1. INVISCID OUTER FLOW

For a homentropic and irrotational #ow, the velocity vector is the gradient of a scalar
potential function. For the case of inviscid and nonheat-conducting #ow, the potential
satis"es the full-potential equation, which may be expressed as
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In this work, we discretize the potential using a "nite element method. We used
a computational grid comprised of isoparametric quadrilateral bilinear elements. The value
of the potential / inside a "nite element is related to the value of the potential /
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where N
i
are four interpolation functions, and m and g are the local coordinates inside the

"nite element. In the Galerkin weighted-residual method, an integral formulation is used in
the form
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where Q is the prescribed mass #ux on the boundary and m is the distance along the
boundary, and n is the local normal direction at the boundary of the domain over which the
full-potential equation is solved.

The Galerkin formulation in equation (6) was used to solve both the steady and the
unsteady problems. The small disturbance assumption was used to solve the dynamically



Figure 1. Solution domain used to calculate the inviscid #ow in one stage of a cascade. There are "ve types
of boundary conditions that apply to the #ow: moving airfoil, periodic, wake, upstream far "eld and

downstream far "eld.
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linearized unsteady problem. The potential was decomposed into a steady value U and an
unsteady small disturbance potential u periodically varying in time, such that

/ (x, y, z, t)"U(x, y, z)#R[u (x, y, z) e+ut], (7)

where u@U, j"J!1 is the imaginary unit, and R denotes the real part.
Figure 1 shows the domain where the #ow is solved and the regions where di!erent

boundary conditions apply. On the airfoil boundary, we require that the #ux Q be equal to

Q"Q
!*3&0*-

"o
L/

Ln
, (8)

which arises from the motion of the airfoil and the thickening of the viscous boundary layer,
and n is the local normal direction to the airfoil surface. The periodicity on the upstream
region reads
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where p is the interblade phase angle. The wake boundary condition states that the jump in
pressure across the wake is zero, so that
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Because the computation domain is not perfectly aligned with the wake, an additional
injection #ux is applied on the wake boundaries
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where u is the tangential velocity along the wake and r is the displacement of the wake with
respect to the boundary of the computational domain. For the steady problem, the
upstream and downstream boundary conditions are Dirichlet and Newman, respectively.
For the unsteady problem, they are exact nonre#ecting boundary conditions (Hall et al.
1993) for the linearized unsteady problem.

2.2. VISCOUS BOUNDARY LAYER FLOW

The boundary layer equations may be obtained performing a scale analysis under the
assumption of a very large Reynolds number. In such an analysis, the di!usion process
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parallel to a body surface and wake may be neglected and the momentum equation normal
to the surface may be replaced by the condition of zero normal pressure gradient through-
out the boundary layer. In this analysis, the local airfoil and wake curvature e!ects are
neglected along with the local deformation of the airfoil. Only the rigid-body motion of the
airfoil is analyzed.

The two unsteady compressible equations that describe the #ow in the thin boundary
layer are
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where m and g are now the tangential and normal directions to the surface of the body
(Figure 2) while u and v are the tangential and normal components of the velocity.

Formally integrating the mass conservation and momentum equations, one obtains the
von KaH rmaH n momentum integral equation given by
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Similarly, the integral energy equation is
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where C
f

is the wall shear stress coe$cient, Q
"-

is the wall transpiration due to the
boundary layer displacement thickness, and the subscript e indicates quantities measured at
the boundary between the inviscid and viscous regions.

The formal integration leads to a number of unknown quantities such as the density
thickness do , the coe$cient of dissipation C

D
, the kinematic density displacement d**, etc.

These quantities are described in terms of only two variables, h and d*, by assuming
prescribed shapes for the velocity pro"le inside the boundary layer. Based on both
analytical solutions of simple #ows and experimental data, many researchers have de-
veloped correlation functions (Drela 1986; Nishida & Drela 1995; LeBalleur 1978; Veldman
1979; Whit"eld et al. 1981) that describe the relationship between h and d* and all the
unknown quantities from equations (14) and (15). The correlations used include semi-
empirical and empirical relationships between various integral boundary layer character-
istics, including
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where q
8!--

is the tangential wall shear stress.
Laminar-turbulent transition is of considerable practical interest because it strongly

in#uences where separation occurs. The Orr}Somerfeld equation which governs the growth
and decay of in"nitesimal waves in the shear layer was used in combination with the
en method to determine the transition. The en method correlates the position of the
transition to the position where the overall maximum ampli"cation of Tollmien}Schlicht-
ing disturbances is en. We used the approximate spatial ampli"cation curve derived by
Drela (1986) based on the Orr}Somerfeld equation applied to a Falkner}Skan pro"le
family.

The only parameter of the two boundary layer equations (14) and (15) which involves
Reynolds stresses is the velocity weighted integral in C

D
. Due to the experimental evidence

for upstream history e!ects on the Reynolds stresses, Drela introduced a lag equation that
correlates the dissipation factor to the shear stress coe$cient given by
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is the maximum Reynolds stress. The lag equation for the Reynolds shear
stress scale was developed by Green (Green 1976; Green et al. 1976), starting from
Bradshaw's simpli"ed model of the turbulence kinetic energy transport equation. Following
the work of Drela (1986), we used this equation together with correlations for the equilib-
rium, self-preserving #ow shear stress and edge velocity gradient
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where ;
.!9

is the equilibrium slip velocity at the location of maximum shear stress, Cq%2 is
the equilibrium shear stress coe$cient, and K

c
"5)6 is an empirical constant (Drela 1996).

The solution domain used to compute the viscous #ow is shown in Figure 2, where the
thickness of the domain is considered small in comparison to the gap. The steady integral
boundary layer equations are parabolic in space so that boundary conditions have to be
applied only at the stagnation point. Close to the stagnation point, the #ow is similar to
a #ow over a wall. There is an analytical similarity solution for this #ow that relates the
displacement thickness to the inviscid tangential velocity (Cebeci & Bradshaw 1977). This
similarity solution was used as boundary condition at the stagnation point.

The reduced frequencies associated with the unsteadiness in the inner, boundary layer
#ow are much higher than the reduced frequencies associated with the outer, inviscid #ow
due to the large di!erence in length scales, i.e. the di!erence between the chord and the
boundary layer thickness. Thus, we have extended Drela's (1986) correlations on a
Figure 2. Solution domain used to calculate the viscous #ow in one stage of a cascade. A special local analytical
solution is used at the stagnation point.
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quasi-steady basis by assuming that the unsteadiness in the boundary layer is quasi-steady.
The dynamic linearization of the inner, boundary layer equations was performed by
linearizing Drela's correlations with respect to the primary boundary layer variables, i.e. d*,
h and Cq .

2.3. VISCOUS}INVISCID COUPLING

Some of the early coupling solution techniques proposed in the literature solved separately
the viscous and inviscid regions in an alternate iterative fashion. This technique is known as
the direct coupling method and is most useful for weakly interacting #ows, e.g. #ows with
thin boundary layers. The direct coupling method works well, but it converges slowly or
fails to converge for strongly interacting #ows. Various techniques have been developed to
improve and accelerate the convergence of inviscid}viscous interaction methods. These
techniques may be classi"ed as inverse (Catherall & Mangler 1966). semi-inverse (LeBalleur
1978), quasi-simultaneous (Veldman 1979, 1981) and simultaneous. In this paper, we used
a fully simultaneous technique which solves both the viscous and inviscid regions simulta-
neously using the tangential velocity at the displacement body and the transpiration
velocity to account for the displacement thickness. As opposed to the other techniques, no
iterations are required in the fully simultaneous method once the simultaneous set of
equations is solved.

The coupling between the inviscid and viscous regions is of major importance, especially
at the trailing edge where the Kutta condition applies. The tangential inviscid velocity has
a strong variation in this region, therefore having not only a local e!ect, but also a global
e!ect on the characteristics of the #ow. The inviscid}viscous coupling was implemented
using an injection velocity also known as wall transpiration. This velocity is equal and of
opposite sign to the entrainment velocity, and may be obtained starting from the continuity
equation in defect form
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where the subscript inv indicates inviscid variables. Under the assumption of a "rst-order
match at the boundary layer, one concludes that o
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ent of the velocity normal to the surface is expanded in a Taylor series and only the "rst two
terms are retained. Finally, imposing the matching condition at the body surface, one
obtains
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On the airfoil, the transpiration #ux is added to the injection due to airfoil motion. In the
wake, the transpiration #ux is added to the injection due to the motion of the wake.

3. UPWINDED TRANSONIC GALERKIN FORMULATION

There have been many studies of the transonic full-potential equation, e.g. one of the early
pioneers being Murman (Murman & Cole 1971). The Galerkin technique is well-posed for
all domains where the governing full-potential equation is elliptic. In the supersonic region,
however, the governing equation is hyperbolic. To account for the change in characteristics
of the equation, the arti"cial compressibility method developed by Hafez (Hafez et al. 1979;
Tatum 1983) is used. Using this technique, the local density used in computing the elemental
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residual for an element e is modi"ed in the supersonic and transonic regions. The new
density may be expressed as

o8 e"oe!l (oe!oe~1), (20)

where e!1 is the neighbor element located upwind with respect to element e and l is an
upwinding coe$cient. Many formulas have been proposed for the coe$cient l (Habashi &
Hafez 1982; Habashi et al. 1985; Hafez et al. 1979; Murman & Cole 1971). In this work, we
used the relation proposed by Whitehead & Newton (1985) and investigated by Giles (1985)
and Cedar & Stow (1985), i.e.
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where M is the local Mach number, l
0

is typically 0)3, l
1

is approximately 1, and j is usually
20. The formula for the upwinding coe$cient for the supersonic region represents upwind-
ing of the #ux o$/, and may be obtained by a Taylor expansion of the #ux o$/ as
a function of the spatial coordinates along a streamline (Giles 1985; Tannehill et al. 1997).

4. CODE VALIDATION

The Tenth Standard Con"guration (Fransson & Verdon 1993) is used to validate the results
obtained with the inviscid}viscous computer code. This con"guration is a generic compres-
sor cascade geometry. The airfoils in the cascade have a circular arc camber line with 5%
camber and a modi"ed NACA-0006 thickness distribution. The chord of the airfoils is
denoted by c, the gap between the airfoils is denoted by G. A solidity G/c of 1 is considered.
The stagger angle c is 453. The upstream far-"eld Mach number M is 0)8, the in#ow angle
H is 553, and the Reynolds number based on chord and upstream velocity Re is 5]105. For
this con"guration, there is a shock expanding into the steady #ow on the pressure side of the
airfoils. The shock is located at approximately 25% of the chord and does not extend over
Figure 3. Isentropic Mach number on the airfoil for steady #ow and an inlet Mach number of 0)8: *,
Navier}Stokes; s*s, inviscid}viscous; - - -, inviscid.
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the entire gap. The isentropic Mach number on the surface of the airfoil is shown in
Figure 3. This "gure shows that the Mach number obtained using the inviscid}viscous
interaction computer code agrees fairly well with the Mach number obtained using
a Navier}Stokes code (Clark 1998). Di!erences in the results are observed close to the
trailing edge where the inviscid}viscous calculation predicts a #atter Mach number distri-
bution along the chord. The shock location and strength, however, are shown to agree very
well. In contrast, the Mach number predicted by an inviscid calculation, also shown in
Figure 3, di!ers signi"cantly from the viscous calculations con"rming that viscous e!ects
are signi"cant in this #ow regime.

The dynamically linearized unsteady response of the #ow to a periodic pitching oscilla-
tion of the cascade of blades about the mid-chord point, with a reduced frequency k"0)5
and an interblade phase angle p"903, is shown in Figures 4 and 5. The reduced frequency
Figure 5. The imaginary (out-of-phase) part of the unsteady coe$cient of pressure C
P

for a pitching motion
about the mid-chord: *, linearized Navier}Stokes; s*s, inviscid}viscous.

Figure 4. The real (in-phase) part of the unsteady coe$cient of pressure C
P

for a pitching motion about the
mid-chord: *, linearized Navier}Stokes; s*s, inviscid}viscous.



Figure 6. Coe$cient of pressure C
P

for steady #ow using a "ne and a coarse grid. *, Fine grid; s, coarse grid.
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k is de"ned as k"uc/v
=

, where c is the chord and v
=

is the total velocity upstream in the
far "eld. The results obtained using the inviscid}viscous calculation agree reasonably well
with the linearized Navier}Stokes results (Clark 1998). While the di!erences in the steady
response were very small, the unsteady #ow calculations using the two methods di!er more
signi"cantly. However, the general trend and magnitude of the results agree reasonably
well.

The results presented are not sensitive to grid re"nement. Figure 6 shows the steady
coe$cient of pressure obtained with a coarse and a "ne grid. The "ne grid has 50]300
nodes, and the coarse grid has 30]200 nodes. Figures 7 and 8 show the in-phase
and out-of-phase components of the coe$cient of pressure for a pitching motion of the
airfoils about their mid-chord with a reduced frequency k"0)5 and an interblade
phase angle p"903. The results obtained using the two grids, while not in exact
agreement, agree reasonably well. Clearly, grid resolution alone does not account
for the di!erences between the inviscid}viscous and linearized Navier}Stokes calcula-
tions.

Finally, another self-consistency test may be performed to check the validity of the
linearization. In this test, unsteady results are computed by two di!erent methods.
First, results are obtained for the nominal geometry of the cascade using the dynamically
linearized perturbation approach with the frequency of perturbation set to zero. In
the second approach, results are obtained using the nonlinear steady #ow solver for
a geometry that is obtained from the nominal geometry by imposing a small rotation
about the mid-chord of the airfoils. Dividing the di!erence between the steady results for
the nominal and new geometries by the magnitude of the small rotation about the
mid-chord point gives a "nite di!erence approximation of the linearized perturbation
response (at zero frequency and zero interblade phase angle). A comparison of the results
from these two di!erent methods is presented in Figure 9. The perturbation results are
shown to agree very well with those from the "nite di!erence approximation. The error
made in approximating the unsteady response by "nite di!erences is of the order of the
truncation error, while the error due to the various computations is of the order of the
round-o! error.



Figure 7. The real (in-phase) part of the unsteady coe$cient of pressure C
P

for a pitching motion about the
mid-chord using a "ne and a coarse grid. *, Fine grid; s, coarse grid.

Figure 8. The imaginary (out-of-phase) part of the unsteady coe$cient of pressure C
P

for a pitching motion
about the mid-chord using a "ne and a coarse grid. *, Fine grid; s, coarse grid.
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5. PROPER ORTHOGONAL DECOMPOSITION

First introduced in the time domain (Romanowski 1996), proper orthogonal decomposition
(POD) has recently been used also in the frequency domain (Epureanu et al. 2001; Hall
et al. 1999; Kim 1998). In this paper, we used the &&snapshot'' proper orthogonal decomposi-
tion method. In this approach, the response of the linearized system with ¸ degrees
of freedom is obtained and stored in a solution vector U

i
, for a set of N excitation

frequencies u
i
. Each solution vector U

i
has ¸ complex entries and, therefore, contains

both the phase and the magnitude of the response. A matrix R of size ¸]N is formed such



Figure 9. Unsteady coe$cient of pressure C
P

for a pitching motion about the mid-chord at zero frequency.*,
Perturbation analysis; s*s, "nite di!erence approximation from nonlinear steady #ow solver.
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that its ith column is the solution vector U
i
for each i4N. A correlation matrix is then

assembled in the form

C"R*R, (22)

where the superscript * indicates the Hermitian operator. The eigenvalues of the correlation
matrix are then obtained by solving an eigenvalue problem of dimension N]N, i.e.

Cv
i
"j

i
v
i
, (23)

where i varies between 1 and N, j is the reduced-order eigenvalue, and v
i
are eigenvectors of

dimension N. Among the POD eigenvalues obtained, the largest eigenmodes contain most
of the energy of the #uid motion. The reduced-order modes v

i
and eigenvalues are, therefore,

organized in descending order, that is, from the most important to the least important.
The most signi"cant n modes are then grouped in a matrix V of size N]n such that the

ith column of V is the vector v
i
, i"1,2, n. The equations of motion and the state-space

vector are then projected onto the space spanned by these vectors and a reduced-order
model is obtained. Formally, one may express the dynamically linearized equations of
motion as

u2A
2
U#uA

1
U#A

0
U"b, (24)

where b is the inhomogeneous forcing vector arising from the motion of the airfoil.
Multiplying of equation (24) the left-hand side by the Hermitian of the projection matrix
P"RV, and considering only the solutions contained in the subspace S spanned by the
columns of P, one obtains a reduced-order system of size n, i.e.

u2P*A
2
PU3 #uP*A

1
PU3 #P*A

0
PU3 "P*b, (25)

where U3 is the component of the solution U in the subspace S, so that

U"PU3 . (26)

Equation (25) represents the reduced-order model, which is solved for the n unknowns U3 .
These unknowns are then expanded back into the original physical space using equation
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(26). One important feature of the proper orthogonal decomposition technique is that the
eigenvalues of the reduced-order model in equation (25) are good approximations of the
eigenvalue of the full system.

6. REDUCED-ORDER MODELS

The same con"guration used to validate the viscous}inviscid interaction model, is also used
to demonstrate the applicability and usefulness of reduced-order models. The blades have
chord c and are assumed to vibrate with reduced frequency k"uc/v

=
in a pitch motion

about the mid-chord point. The upstream far-"eld Mach number M is 0)85. The interblade
phase angle of the vibration of the airfoils is denoted by p.
Figure 10. The real (in-phase) part of the unsteady coe$cient of pressure C
P

using the full model and various
reduced-order models. All points essentially fall on a single curve, but some are omitted for the sake of clarity.*,

Full model; - - -, 15-mode model (p); s, 15-mode model (k); n, 75-mode model (k and p).

Figure 11. The imaginary (out-of-phase) part of the unsteady coe$cient of pressure C
P

using the full model and
various reduced-order models. All points essentially fall on a single curve, but some are omitted for the sake of

clarity. *, Full model; - - -, 15-mode model (p); s, 15-mode model (k); n, 75-mode model (k and p).
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Figures 10 and 11 show the real (in-phase) and imaginary (out-of-phase) coe$cient of
pressure obtained using the full model and three distinct reduced-order models. The
reduced frequency k is 1)0, and the interblade phase angle p is 903. One reduced-order model
was constructed using 15 modes obtained from 72 POD snapshots computed by varying the
interblade phase angle uniformly from !180 to 1803. This reduced-order model is denoted
by ROM-p. Another reduced-order model was constructed using 15 modes obtained by
computing 100 snapshots by varying the reduced frequency k uniformly between 0 and 2)75.
This reduced-order model is denoted by ROM-k. The third reduced-order model used in
Figures 10 and 11 was constructed using 75 modes obtained from 10]18 snapshots
computed by varying both the interblade phase angle p (10 values uniformly distributed
between !180 and 1803) and the reduced frequency k (18 values uniformly distributed
between 0 and 2)75). This reduced-order model is denoted by ROM-p}k. The unsteady
pressure distribution obtained with any of the three reduced-order models is shown to agree
very well with the results provided by the full model. All points essentially fall on a single
curve, but some are omitted for the sake of clarity.

Figure 12 shows the real (in-phase) part coe$cient of lift obtained using the full model,
the ROM-p model (15-modes), and the ROM-p}k (75 modes). The coe$cient of lift
obtained with the reduced-order models agree very well with the results obtained with the
full model. A small number of modes (15) are required to model the entire range of
interblade phase angles for a speci"c reduced frequency. However, a larger number of
modes (75) is required when the reduced-order model is required to model the entire range
of interblade phase angles and a large range of reduced frequencies. When compared with
a subsonic reduced-order model (Epureanu et al. 2001), the transonic reduced-order model
requires a larger number of POD modes. This may be due to the increased Mach number
and the presence of the shock and the strong inviscid}viscous interaction in the shock area.
A subsonic reduced-order model requires about 25 modes, whereas the transonic reduced-
order model requires 75 modes. Nevertheless, the dimension (75) of the transonic reduced-
order model is much smaller than the dimension of the original system. The reduction in
dimension is about three orders of magnitude. Similar results are obtained for the imaginary
(out-of-phase) part of the coe$cient of lift, and are not shown here for the sake of brevity.
Figure 12. Real (in-phase) part of the unsteady coe$cient of lift C
L

using the full model and various reduced-
order models. *, Full model; s, 15-mode model (p); h, 75-mode model (k and p).



Figure 13. Real (in-phase) part of the unsteady coe$cient of lift C
L

using the full model and various reduced-
order models. *, Full model; s, 15-mode model (k); h, 75-mode model (k and p).
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Figure 13 shows the real (in-phase) part of the coe$cient of lift for various reduced
frequencies. The lift obtained using the full model is shown together with the lift obtained
using two reduced-order models. One reduced-order model is the ROM-k model, which
uses 15 modes. The other reduced-order model is ROM-p}k model, which is the same
model used in Figure 12 (75 modes). The lift computed using either reduced-order model are
in very good agreement with the results obtained with the full model. A small number of
modes is required to accurately model the system over a wide range of reduced frequencies
when the interblade phase angle is maintained constant. Also, the more general reduced-
order model is shown to accurately predict the dynamics of the system for a wide range of
reduced frequencies. Similar results are obtained for the imaginary (out-of-phase) part of the
coe$cient of lift, not shown here for the sake of brevity.

The lower-dimensional models ROM-k and ROM-p which use only 15 modes are
specialized models. Their validity is limited to the range of parameters used for their
construction. For example, the model ROM-k performs poorly if it is used to compute the
#ow for various interblade phase angles. The low performance is due to the fact that
ROM-k is a specialized/tuned model, valid for an interblade phase angle of 903. Similarly,
the model ROM-p performs poorly when used to compute the #ow for various reduced
frequencies. Although ROM-p performs very well for a "xed reduced frequency k of 1, its
performance is limited when used at other values of k. Nevertheless, the 75 mode model
ROM-p}k performs well for a full spectrum of interblade phase angles as well as a large
range of reduced frequencies. The ROM-p}k is not as specialized as ROM-k or ROM-p, but
is more general. The generality is provided by the increased number of POD modes used,
from 15 in the case of ROM-k and ROM-p to 75 in the case of ROM-p}k.

7. CONCLUSIONS

Starting from a fully nonlinear unsteady model of the transonic #ow in a turbomachinery
cascade of blades, the nonlinear steady #ow was "rst determined. Then the unsteady #ow
created by oscillating blades was calculated by linearizing the dynamic perturbation about
the nonlinear steady #ow. An inviscid}viscous #ow model was used. The inviscid #ow was
described by the full-potential equation with appropriate upwinding in the transonic region.
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The viscous #ow near the airfoils and in the wakes was described by an integral boundary
layer model.

A frequency domain solution was constructed for the unsteady perturbation of the #ow
"eld. The proper orthogonal decomposition technique was then applied to the frequency
domain model to construct several reduced-order models of the transonic #ow. Surely, if
one only wants the aerodynamic information per se, then constructing the POD model
takes about as much time as the original method. However, if one wants to combine the
aerodynamic model with a structural model (not to mention an active control system), then
the time saved is orders of magnitude because one is using a POD model with less than 100
degrees of freedom (as shown in this paper) versus using the original CFD model with more
than 10 000 degrees of freedom. Thus, it is in the aeroelastic analysis that the time savings
are primarily realized, not in generating the aerodynamic data per se. The purpose of
constructing a POD model is then to put the basic physics of the original CFD model in
a more compact form that is advantageous to those who do aeroelastic analyses.

A cascade of blades forming the Tenth Standard Con"guration was investigated to show
that the reduced-order model with only 15}75 degrees of freedom accurately predicts the
unsteady response of the full system with approximately 15 000 degrees of freedom.
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